View Single Post
  #17 (permalink)  
Old 03-31-2011, 07:44 AM
randlej's Avatar
randlej randlej is offline
CC Member
Visit my Photo Gallery

 
Join Date: Jan 2009
Location: Lakeway, tx
Cobra Make, Engine: Lonestar Classics
Posts: 64
Not Ranked     
Default

That is a very valid point. My car in Austin started acting up last month with the weather heating up early. A quick google search found the following interesting read (btw, is there an additive to combat winter gas??).......
__________________________________________________ _________
A Primer on Gasoline Blending
Gasoline is composed of many different hydrocarbons. Crude oil enters a refinery, and is processed through various units before being blended into gasoline. A refinery may have a fluid catalytic cracker (FCC), an alkylate unit, and a reformer, each of which produces gasoline blending components. Alkylate gasoline, for example, is valuable because it has a very high octane, and can be used to produce high-octane (and higher value) blends. Light straight run gasoline is the least processed stream. It is cheap to produce, but it has a low octane. The person specifying the gasoline blends has to mix all of the components together to meet the product specifications.

There are two very important (although not the only) specifications that need to be met for each gasoline blend. The gasoline needs to have the proper octane, and it needs to have the proper Reid vapor pressure, or RVP. While the octane of a particular grade is constant throughout the year, the RVP spec changes as cooler weather sets in.

The RVP is the vapor pressure of the gasoline blend when the temperature is 100 degrees F. Normal atmospheric pressure varies, but is usually around 14.7 lbs per square inch (psi). Atmospheric pressure is caused by the weight of the air over our heads. If a liquid has a vapor pressure of greater than local atmospheric pressure, that liquid boils. For example, when you heat a pot of water, the vapor pressure increases until it reaches atmospheric pressure. At that point, the water begins to boil.

In the summer, when temperatures can exceed 100 degrees F in many locations, it is important that the RVP of gasoline is well below 14.7. Otherwise, it can pressure up your gas tanks and gas cans, and it can boil in open containers. Gas that is boiled off ends up in the atmosphere, and contributes to air pollution. Therefore, the EPA has declared that summer gasoline blends may not exceed 7.8 psi in some locations, and 9.0 psi in others.

A typical summer gasoline blend might consist of 40% FCC gas, 25% straight run gas, 15% alkylate, 18% reformate, and 2% butane. The RVP of the gasoline blend depends on how much of each component is in the blend, and what the RVP is of each component. Butane is a relatively inexpensive ingredient in gasoline, but it has the highest vapor pressure at around 52 psi.

In a gasoline blend, each component contributes a fraction to the overall RVP. In the case of butane, if there is 10% butane in the blend, it will contribute around 5.2 psi (10% of 52 psi) to the overall blend. (In reality, it is slightly more complicated than this, because some components interact with each other which can affect the expected RVP). This means that in the summer, the butane fraction must be very low in the gasoline, or the overall RVP of the blend will be too high. That is the primary difference between winter and summer gasoline blends.
__________________
2009 Lonestar Classics - 351 W
Reply With Quote