Not Ranked
With a return system, the base pressure is set with the engine off, but the pump running. For a GM, this pressure is usually set to 58psi (factory fuel pressure in the rail). The vacuum/boost referenced regulator will help to change the pressure in the rail based on the pressure in the manifold. When an engine is idling, it may be pulling 20 inHg of vacuum, which translates to roughly 10psi. The reference to the regulator will allow it to adjust and lower the pressure in the rail to 48psi, resulting in 58psi effective pressure, which is the same as the base pressure. When the engine is making 10psi boost, the regulator will adjust and increase rail pressure to 68psi, again resulting in 58psi of effective pressure. The regulator will constantly bleed off pressure inside of the rail to maintain the same effective pressure at all operating conditions. This helps to prevent a loss of effective pressure during wide open throttle, and also helps to prevent injectors from having to run extremely low pulse widths to fuel at idle. A downfall of return systems is the fact that they circulate fuel through a very hot engine bay, ultimately carrying that heat back into your fuel tank.
A return style system that isn’t variable will maintain a certain pressure inside the rail, regardless of what is happening in the manifold. For instance, take a GM system with the standard 58psi in the rail (usually there is a mechanical regulator near the pump to bleed pressure back into the tank and keep the rail itself at 58psi). No matter what operating condition (short of demanding more fuel than the pump can supply), pressure in the rail will always be 58psi (or pretty close). When idling at 20 inHg, this means effective pressure will rise to 68psi because the vacuum in the manifold is adding 10psi to the rails 58psi. This requires injectors to pulse shorter so as to not overfuel the engine and cause a rich condition. By contrast, when a naturally aspirated engine is wide open throttle, the manifold pressure is not in vacuum or in boost, so the effective pressure is the 58psi of rail pressure and nothing more. However, a boosted engine at 10psi will be resisting the fuel, causing effective pressure to drop to 48psi from the 58psi in the rail. This lowers the ultimate output of the injectors
|